#note Population Genetics A Concise Guide (2)

Page 9

It’s not a particularly precise estimate because of the small sample size. A rough approximation to the 95 percent confidence interval for a proportion is

    \[  \hat{p}\pm 1.96\sqrt{\hat{p}(1-\hat{p})/n} \]

where p̂ is the estimate of the proportion, 0.55 in our case, and n is the sample size. Thus, the probability that the population allele frequency falls within the interval (0.256, 0.844) is 0.95.

Note:

    \[\hat{p}\pm z\sqrt{\hat{p}(1-\hat{p})/n}\]

Where z is 1-α/2 the quantile of a standard normal distribution (i.e., the probit) corresponding to the target error rate α. For a 95% confidence level, the error α=1-0.95=0.05, so 1-α/2=0.975 and z=1.96.

Binomial proportion confidence interval

Python

from statsmodels.stats.proportion import proportion_confint
proportion_confint(count=6,nobs=11, alpha=(1 - 0.95))

statsmodels.stats.proportion.proportion_confint

(But when I tried to use method “binom_test”, it caused \”kernel restart” issue in Jupyter Notebook…)

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top